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The Analysis of Image Contrast: From Quality
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Abstract—Proper contrast change can improve the perceptual
quality of most images, but it has largely been overlooked in the
current research of image quality assessment (IQA). To fill this
void, we in this paper first report a new large dedicated contrast-
changed image database (CCID2014), which includes 655 images
and associated subjective ratings recorded from twenty-two inex-
perienced observers. We then present a novel reduced-reference
image quality metric for contrast change (RIQMC) using phase
congruency and statistics information of the image histogram.
Validation of the proposed model is conducted on contrast related
CCID2014, TID2008, CSIQ and TID2013 databases, and results
justify the superiority and efficiency of RIQMC over a majority
of classical and state-of-the-art IQA methods. Furthermore, we
combine aforesaid subjective and objective assessments to derive
the RIQMC based Optimal HIstogram Mapping (ROHIM) for
automatic contrast enhancement, which is shown to outperform
recently developed enhancement technologies.

Index Terms—Image contrast, subjective / objective quality
assessment, statistics information, phase congruency, contrast
enhancement, optimal histogram mapping

I. INTRODUCTION

THE requirement of human viewers for high-quality im-
ages/videos is constantly increasing at the present time.

Broadly speaking, we can define “high quality” as little distor-
tion and appropriate contrast. The former, including commonly
encountered blur, noise and compression artifacts, has been
deeply explored in existing image quality assessment (IQA)
tasks during the last decades, while the latter (contrast change)
has been largely overlooked in the literature. We therefore in
this paper focus on studying the contrast-changed IQA and the
related contrast enhancement technology.

A. Image Quality Assessment

In practice, IQA is an important research topic in image
processing, due to its great help for the development of fusion
[1], enhancement [2]-[3], and denoising [24]. We can divide
IQA into subjective assessment and objective assessment. The
first one is generally considered to be the accurate image
quality measure, since the human viewer is the ultimate judger
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of quality. Nonetheless, subjective methods cannot overcome
the drawbacks of being costly and cumbersome, which attracts
an increasing number of designs for objective metrics.

Limited by the dependence on subjective image databases
[4]-[5], existing objective IQA techniques are mainly devoted
to compression, transmission error, noise and blurring artifacts.
The two most well-known objective models are perhaps full-
reference (FR) peak signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) [6], which assume original and
distorted image signals are entirely known. Afterwards, many
improved SSIM-type of IQA methods have been designed to
pursue better performance [7]-[8]. Many FR IQA metrics also
came from other models. Visual information fidelity (VIF)
[9] is defined from the viewpoint of information measure.
Most apparent distortion (MAD) [10] uses the detection- and
appearance-based scheme. Realizing the significance of low-
level features (e.g. gradient and phase) in the IQA exploration,
feature similarity index (FSIM) [11], gradient similarity index
(GSIM) [12], internal generative mechanism (IGM) [13], spec-
tral residual (SR) SR-SSIM [14], and VS-based Index (VSI)
[15] have been introduced recently.

Reduced-reference (RR) methods work under the situation
that the pristine image can be partly available to assist IQA
tasks. Note that RR information is restricted to be remarkably
smaller than the original image’s size. Following Friston’s
recent discovery of free energy principle [16], we designed the
free energy based distortion metric (FEDM) [17] by simulating
the internal generative model of the human brain to detect
input visual stimuli. Inspired by some observations and analy-
ses on transform domains that have a wide application in im-
age/video processing, RR entropic-difference indexes (RRED)
[18] and fourier transform based quality measure (FTQM)
[19] were developed independently in discrete wavelet and
fourier transform domains. There also exist several RR IQA
models through modifying the successful SSIM, e.g. structural
degradation model (SDM) [20].

In some cases that the original image signal is unavailable,
a growing number of no-reference (NR) methods have been
developed under this situation. One type of NR IQA resorts
to the help of the support vector machine (SVM) [21] to
find the underlying relationship of the chosen features and
subjective human ratings, e.g. Distortion Identification-based
Image Verity and INtegrity Evaluation (DIIVINE) [22], BLind
Image Integrity Notator using DCT Statistics (BLIINDS-II)
[23], Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [24], and No-reference Free Energy based Robust
Metric (NFERM) [25]. Another type of NR methods work
even without the employment of human ratings. They include:
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1) natural image quality evaluator (NIQE) [26], measuring
the deviations of distorted images from statistical regularities
found in natural images; 2) quality-aware clustering (QAC)
[27], using a codebook learnt from a group of quality-aware
centroids to assess the patches’ quality levels for inferring the
overall quality index.

Despite the emergence of hundreds of IQA models, very few
efforts have been made for the issue of contrast-changed IQA.
Therefore, we introduce a new dedicated contrast-changed im-
age database (CCID2014), consisting of 655 images obtained
from fifteen natural ones in the Kodak image database [28].
According to the suggestion given by ITU-R BT.500-13 [29],
we selected the suitable viewing distance and illuminance,
invited 22 inexperienced observers to participate our subjective
experiment, and recorded the corresponding mean opinion
scores (MOSs) of these viewers.

To solve the problem of subjective IQA in real applications,
we further propose a reduced-reference image quality metric
for contrast change (RIQMC) using phase congruence (PC)
and statistics information of image histogram. We first measure
how far the contrast-changed image is from its associated ideal
version in entropy, due to its frequent usage in the calculation
of the mean unpredictability of an input random variable [30].
Human beings, however, mainly concentrate on salient areas
and this enlightens us to estimate the selective entropy on the
human concerned regions detected by the PC since mammals
perceive features at the areas where the Fourier components
are maximal in phase [31].

We also consider the statistical information of crucial mean-
ings in image/video processing and cybernetic systems [32]:
1) the mean (first order statistic) of an image determines the
global brightness [33]; 2) the recent optimal contrast-tone
mapping (OCTM) provides a new concept of expected context-
free contrast defined as the variance (second order statistic) of
the histogram [34]; 3) a surface perception model suggests
the existence of a connection between the human perception
of surface glossiness and the skewness (third order statistics)
[35]; 4) several recent studies on natural image analysis reveal
that the kurtosis (fourth order statistic) can capture intrinsic
properties of natural images [36]. Finally, our RIQMC metric
linearly combines the PC based selective entropy and above-
mentioned four order statistics of the image histogram, owing
to their considerable function in measuring image contrast and
characterizing image naturalness.

B. Contrast Enhancement
A direct use of the contrast-changed IQA is enhancement.

Histogram equalization (HE) [33] is probably the simplest and
broadly applied contrast enhancement technique, which works
by redistributing pixel values to effectively flatten and stretch
the dynamic range of image histogram, so as to increase the
global contrast. But HE easily changes the image luminance
and generates undesirable noise/artifacts, leading to excessive
enhancement. To deal with these problems, one type of directly
modified HE methods aim to preserve the image brightness of
the input visual signal [37]-[38].

Another type of technologies is to formulate contrast en-
hancement as an optimization problem. In [39], Arici et al.

designed the histogram modification framework (HMF) by
first seeking an intermediate histogram h between the input
histogram hi and the uniformly distributed histogram u by
minimizing a weighted distance ||h− hi||+ λ||h− u|| before
performing HE of h. In [34], Wu provided a new definition of
image contrast and tone distortion that is solved by the linear
programming, and thus proposed the OCTM. In [40], Huang
et al. presented a simple transformation model via the adaptive
gamma correction with weighting distribution (AGCWD). In
[41], Raju et al. established a fuzzy logic and histogram based
method (FLHM) under the control of the mean intensity and
the contrast intensification.

Most existing contrast enhancement technologies, however,
strongly depend on the manual parameter tuning, and this
makes an automatic method highly required. Considering that
the positive contrast change can cause valid enhancement,
in this research we propose a simple yet effective automatic
technique, which uses a quality metric highly correlating with
human visual perception to image contrast as the target func-
tion and then seeks for the optimal histogram mapping. Two
valuable findings in our subjective and objective assessments
can help construct the above technique. First, it was viewed
from the CCID2014 database that using the proper compound
function (mean-shifting followed by logistic function) to trans-
fer the input image can reach the goal of higher image contrast
and visual quality, even better than natural images that are
often regarded as the perfect. Second, we will confirm that,
for each original image and its associated contrast-changed
ones, our RIQMC model is able to acquire substantially high
performance, and thus can be served as the target function in
the search of the optimal histogram mapping. Consequently,
we explore the RIQMC based Optimal HIstogram Mapping
(ROHIM) for automatic contrast enhancement.

C. The Organization of This Paper

The rest of this paper is organized as follows: Section II
first introduces the CCID2014 database and points out the
effectiveness of the compound functions for contrast enhance-
ment. In Section III we describe the RR RIQMC algorithms,
and in Section IV we compare with numerous classical and
state-of-the-art IQA methods on CCID2014, TID2008 [42],
CSIQ [43] and TID2013 [44] to confirm the superiority and
efficiency of the proposed quality metric. Section V presents
our automatic ROHIM enhancement approach, and justifies its
effectiveness in comparison to four recently designed models.
Finally, Section VI concludes the whole paper.

II. THE CCID2014 IMAGE DATABASE

Part of the CCID2014 database has been roughly provided
in a conference paper [45]. In this section, we will describe the
entire CCID2014 database. It is known to all that image/video
contrast enhancement is a significant and meaningful topic in
scientific research and applicational development, in that valid
enhancement techniques are capable of improving image/video
contrast and visual quality remarkably, even better than the
original natural images. Despite of the great advance in the
design of quality metrics, the last decade has seen very few
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Fig. 1: The fifteen lossless color images in the Kodak database.

Fig. 2: An original image (left) and its transferred image with a
suitable compound function (right).

papers dedicated to the study of contrast-changed IQA [46]. In
fact, none of FR, RR and NR IQA methods has attained satis-
factory performance, as reported in the later experiments, and
only three small contrast related image subsets in TID2008,
CSIQ and TID2013 have been released to the public up to
now. To this end, we first present a novel dedicated and more
challenging CCID2014 database.

Most of existing image quality databases selected the origi-
nal images of the same size, in order to eliminate the influence
of varying image resolutions. In this research, we therefore
chose fifteen representative lossless color images of the size
768 × 512 from the Kodak image database [28], as given in
Fig. 1. The used natural images cover a wide scope of scenes,
colors, and foreground/background configurations. Overall 655
images come from an original image x via the gamma transfer,
convex and concave arcs, cubic and logistic functions, the
mean-shifting (intensity-shifting), and the compound function
(mean-shifting followed by logistic function).

• Gamma transfer: The usual gamma transfer is es-
sentially the power law function, which is defined as
y = [x·255(

1
n−1)]n, where n = { 15 ,

1
3 ,

1
2 ,

1
1.5 , 1.5, 2, 3, 5}.

We further separate the gamma transfer into two classes:
1) negative gamma transfer for n ≤ 1; 2) positive gamma
transfer for n > 1. Figs. 3(a)-(b) give a straightforward
illustration of these two classes of gamma transfers.
• Convex and concave arcs: These two arcs are quite
similar to the gamma transfer stated above, except each
of them is a minor arc of the equal derivative everywhere.
We plot them in Figs. 3(c)-(d).
• Cubic and logistic functions: The complicated 3-order
cubic function and 4-parameter logistic function are used
in this work. The cubic function is defined as

y = Fc(x, aaa) = a1 · x3 + a2 · x2 + a3 · x + a4 (1)

TABLE I: Pre-set points’ coordinates for cubic/logistic functions.

Curve & color p1 p2 p3 p4
R (0, 0) (127.5, 127.5) (255, 255) (15, 25)

Cubic G (0, 0) (127.5, 127.5) (255, 255) (12, 25)
function B (0, 0) (127.5, 127.5) (255, 255) (10, 25)

K (0, 0) (127.5, 127.5) (255, 255) (09, 25)
R (0, 0) (127.5, 127.5) (255, 255) (25, 15)

Logistic G (0, 0) (127.5, 127.5) (255, 255) (25, 12)
function B (0, 0) (127.5, 127.5) (255, 255) (25, 10)

K (0, 0) (127.5, 127.5) (255, 255) (25, 09)

TABLE II: Subjective experimental conditions and parameters.

Method Single-stimulus (SS)
Evaluation scales Continuous quality scale from 1 to 5

Color depth 24-bits/pixel color images
Image coder Portable Network Graphic (PNG)

Subjects Twenty-two inexperienced subjects
Image resolution 768× 512
Viewing distance 3 ∼ 4 times the image height

Room illuminance Dark

and the logistic function is given by

y = Fl(x, bbb) =
b1 − b2

1 + exp(− x−b3
b4

)
+ b2 (2)

where aaa = {a1, ..., a4} and bbb = {b1, ..., b4} are parame-
ters to be determined. Instead of intuitively adjusting the
above four parameters in each function, we search for
the optimal transfer curve that passes four pre-set points.
This optimized process is performed by adopting the
“nlinfit” MATLAB function. Since the cubic and logistic
functions used in our test are 4-parameter functions, the
optimal transfer curve can be solely determined. The
pre-set points are listed in Table I, where each group
of four pre-set points’ coordinates for cubic and logistic
functions and R, G, B and K in the second column from
left to right separately indicate red, green blue and black
curves exhibited in Figs. 3(e)-(f).
• Mean-shifting: To transfer an original image with 13
levels of 4 (= {0,±20,±40,±60,±80,±100,±120}),
the mean-shifted image is created by y = x +4.
• Compound functions: The compound function with
mean-shifting followed by logistic transfer is adopted in
this study. It stems from an observation that the valid
enhancement can be obtained by properly combining
mean-shifting and logistic function. For instance, as
shown in Fig. 2, the left original image has the lower
quality than the right one that is created by using a
suitable compound function.

Processed with transfer functions mentioned above, the out of
bound values in the produced images were clipped into the
range of 0∼255. Note that, due to the application of 4 = 0 in
the mean-shifting transfer, original images are also included
in our CCID2014 database.

In accordance with ITU-R BT.500-13 [29], we conducted
the experiment by using a single-stimulus (SS) method. This
subjective test involved 22 inexperienced subjects, most of
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(a) (b) (g) (h) (i)

(c) (d) (j) (k) (l)

(e) (f) (m) (n) (o)

(I) Illustration of transfer curves (II) Histograms of MOS values for each image subset

Fig. 3: (I) Illustration of transfer curves: (a) negative gamma transfers; (b) positive gamma transfers; (c) convex arcs; (d) concave arcs;
(e) cubic functions; (f) logistic functions. (II) Histograms of MOS values: (g) convex arcs; (h) concave arcs; (i) cubic functions; (j) logistic
functions; (k) mean-shifting; (l) negative gamma transfer; (m) positive gamma transfer; (n) compound function; (o) the entire database.

which were college students with various kinds of specialties.
We randomized the presentation order of all testing images to
reduce memory effects on the mean scores. During assessing
the quality of each image, the subjects were required to provide
their overall sensation of quality on a continuous quality scale
from 1 to 5. We summary major information about the test
environment in Table II.

We finally processed all of the gathered MOS values. We
assigned scd as the score obtained from the subject c to the
distorted image yd, where c = {1, ..., 22}, d = {1, ..., 655},
before processed the data: 1) Screening the outliers of all ob-
servers’ ratings caused by inattentive subjects; 2) Computing
the MOS score for each image yd as 1

NC

∑
c scd, where NC

is the number of participants.

We also plot the distribution of MOS values for different
categories of contrast-changed images in Figs. 3 (g)-(o). An
important observation in (n) indicate that quite a few images
processed by compound functions (i.e. mean-shifting followed
by logistic function) have obtained very high subjective quality
scores, equal to or larger than 4. In comparison, the MOS
values of most original natural images are just around 3.5.
We may explain this phenomenon by the fact that the logistic
transfer increases the difference of adjacent values’ pixels and
the complementary mean-shifting adjusts the mean luminance
of the input image to be a proper value, especially for natural
images [47]. Hence, an appropriate compound function will be
considerably helpful for the design of contrast enhancement
methods, which will be discussed in Section V.

III. THE PROPOSED RIQMC METRIC

Current IQA researches mainly focus on noise, blur, trans-
mission error, and compression artifacts, and thereby most
existing quality metrics were proposed to measure the dif-
ference/fidelity between the original and distorted images to
predict a quality score. In general, a distorted image has the
lower perceptual quality than its corresponding ideal version.
Contrast change, however, is distinct from the above distortion
types for the reason that an image processed by a proper
histogram mapping can obviously improve image contrast and
visual quality. Despite the importance of contrast change, most
existing IQA models, even state-of-the-art FR quality metrics,
work ineffectively for this issue.

As a result, we devote to the IQA of contrast change via
a two-stage framework. The first and fundamental stage is to
compare the “similarity” of the original and contrast-changed
images, since the high-quality image should be not far from
its pristine copy. Furthermore, human viewers usually pay
attention to salient regions, and this leads us to use the PC
to search for the important regions, before estimating the
difference of entropy on the selected regions in the original
and contrast-changed images. The second stage is related to
“comfort”. The first and second order statistics (mean and
variance) are adopted in this framework inspired by their great
contributions in assessing image quality in previous work, e.g.
[20] and [25]. The third and fourth order statistics (skewness
and kurtosis) are also used according to some recent findings
in the neuroscience and natural scene statistics, which reveals
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: The top row are an original image “two macaws” (a) and its three contrast-changed versions (b)-(d), while the bottom row are the
corresponding PC maps (e)-(h). Though the top row images have clearly different contrast, their PC maps are almost the same.

that high order statistics are connected to the human’s feeling
of “comfort”. At last, we pool the above two parts with a
simple linear fusion model to derive the overall quality score.

A. Similarity

Entropy is a chief concept in statistics [30]. It represents
the amount of information for a random signal by quantifying
its average unpredictability. A high-contrast image is often of
large entropy. We first denote the entropy of a contrast-changed
image y as

H(y) = −
255∑
i=0

Pi(y) · logPi(y) (3)

where Pi(y) indicates the probability density of i-th grayscale
in the image y, and log(·) has base two. Most IQA methods
share two steps: 1) local quality/distortion measurement; 2)
pooling. As a matter of fact, several efforts have succeeded in
estimating perceptual weights for pooling based on singular
value decomposition [48], information content [8], and tex-
tual connected component [49], and the models have indeed
induced noticeable IQA performance gain. This motivates the
usage of a proper pooling strategy in this implementation.

Generally, sharp changes in gradient or intensity are used to
detect features, whereas the PC theory shows that the Fourier
phase rather than the Fourier amplitude stores much more
perceptual information in an input visual signal [50], and
furthermore, the mammals usually perceive features at those
pixels where the Fourier components are maximal in phase.
According to the important physiological and psychophysical
evidence, a simple yet biologically plausible PC model was
defined to detect and identify features in a visual signal [31].
In fact, the PC has been validly incorporated into many IQA
techniques [51]-[52].

More precisely, for a signal s, we denote by Me
n and Mo

n

the even- and odd-symmetric filters on scales n, and they form
a quadrature pair. Here Me

n and Mo
n are evaluated using the

log-Gabor filters [53]. Responses of each quadrature pair to

the signal will produce a response vector at position j on
scale n: [en(j), on(j)] = [s(j) ∗Me

n, s(j) ∗Mo
n], and the local

amplitude on scale n is An(j) =
√
en(j)2 + on(j)2. Let

F (j) =
∑
n en(j) and H(j) =

∑
n on(j). The PC can be

evaluated by

PC(j) =
U(j)

ε+
∑
nAn(j)

(4)

where U(j) =
√
F 2(j) +H2(j) and ε is a small positive

constant for avoiding division by zero. In this paper we apply
another easy way to measure the PC [54]:

PC(j) =

∑
nW (j)bAn(j) ·∆θn(j)− Tnc

ε+
∑
nAn(j)

(5)

where bc is a floor function rendering the argument unchanged
if non-negative, and zero otherwise. Tn indicates an estimate
of the noise level. ∆θn(j) = cos[θn(j)− θ(j)]−| sin[θn(j)−
θ(j)]| is a sensitive measure of the phase deviation, with
θ(j) being the average phase at j. W (j) = 1

1+exp[(u−t(j))v]

is a tapered weighting function, with t(j) =
1
N

∑
n An(j)

Amax(j)+ε
, u

being the cut-off value of filter response spread below which
PC values become penalized, and v being a gain factor that
controls the sharpness of the cutoff. Next, the selective entropy
of the contrast-changed image y is defined as Hs(y) = H(ypc),
where ypc is constituted by the pixels corresponding to the l%
highest values in the detected PC map.

Despite the fact that entropy measures the average unpre-
dictability of an image signal, it is incapable of characterizing
and discriminating various image scenes. For instance, we can
easily find out two images that have the same histogram and
entropy yet show a beautiful scene and a disorderly picture
respectively. Therefore, we compute the difference of selective
entropy values of the original and contrast-changed images
to measure “similarity”. For the original image x, the PC
based entropy is similarly defined as Hs(x). We then quantify
“similarity” by

R0 = Hs(y)−Hs(x). (6)
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Here we want to emphasize that the two PC maps that are
separately computed by applying PC to the pristine image and
its contrast-changed version are almost the same, since it is
invariant to changes in image brightness or contrast [54]. That
is to say, the PC maps computed from different images of
the same image content (i.e. the identical original image) are
greatly similar. An example in Fig. 4 illustrates this.

B. Comfort

The mean or the first order statistic of y determines the
overall brightness of image histogram. In the photograph tech-
nology, a pair of frequently encountered problems are overex-
posure (high-mean brightness) and underexposure (small-mean
brightness), which often degrades the quality of pictures and
decreases the comfort of users. Hence, cameras usually have
an automatic function of adjusting the image histogram with
a possibly suitable gamma transfer. But at the same time, im-
proper selections of gamma functions will instead deteriorate
the image contrast and visual quality. So we punish images
with very large or low means by introducing a Gaussian kernel
to design the first order statistic related term as:

R1 = exp[−(
E(y)− µ

ν
)2] (7)

where E(y) is defined as the expectation of the image y, and
µ and ν are fixed model parameters of determining the mean
and the shape of the used Gaussian kernel.

We can basically categorize early studies of contrast en-
hancement into two types: context-sensitive and context-free.
The former one defines contrast based on the rate of change
in intensity between neighboring pixels, and the contrast can
be enhanced by directly adjusting the local waveform in
a pixel-wise manner. The latter type is to manipulate the
input image histogram to separate the gray levels of higher
probability further apart from the surrounding gray levels. For
example, HE is a classical context-free contrast enhancement
technology. Aiming to increase the average difference between
any two altered input gray levels, Wu defined a novel concept
of expected context-free contrast as a function of variance
(second order statistic) of the image histogram recently [34].
Accordingly, we take into account the second order statistic
term given by

R2 = σ2(yh) = E(y2h)− E(yh)2 (8)

where yh indicates the histogram of the image y.
In the real life, a great number of common pictures, pro-

cessed by PS (photoshop) masters, became excellent master-
pieces. One of the most important techniques is to adjust the
image histogram. In fact, it was found that human viewers use
the skewness to assist to make judgements about contrast [35].
For instance, when an image has a positively skewed statistics,
it tends to appear darker and glossier than a similar image
with lower skewness. Motoyoshi et al. provided an interesting
surface perception model to explain this phenomenon, which
suggests that there exists a connection between the human
visual perception to surface glossiness and the skewness (third
order statistic). They further simulated a neural mechanism to

Fig. 5: Illustration of the basic flowchart of our RIQMC metric.

reveal that the on-center and off-center cells and an acceler-
ating nonlinearity in the human visual system compute the
subband skewness to estimate the perceptual surface quality.
This paper consequently includes the skewness as follows:

R3 = skewness(y) =
E[y− E(y)]3

σ3(y)
(9)

where σ(y) indicates the image y’s variance value.
The skewness is a measure for the degree of symmetry in

the variable distribution, while the higher-order kurtosis is to
quantify the degree of peakedness/flatness. In this research,
the kurtosis is also used as an index to predict the quality
of contrast-changed images. We found that largely skewed
images often have tall glossiness, yet they sometimes look
unnatural. Based on an observation that the absolute kurtosis
value of a contrast-changed image tends to be larger than that
of its associated original one, in this paper we thereby adopt
the kurtosis as the last term in the RIQMC:

R4 = kurtosis(y) =
E[y− E(y)]4

σ4(y)
− 3. (10)

C. Fusion
Finally, we combine the “similarity” and “comfort” together

to derive the overall quality scores of contrast-changed images.
Here, we use a simple linear fusion to integrate the difference
of PC based entropy and four order statistics:

RIQMC =
4∑
i=0

ri ·Ri

= − r0 ·Hs(x)︸ ︷︷ ︸
For the orignal x

+ r0 ·Hs(y) +
∑4

i=1
ri ·Ri︸ ︷︷ ︸

For the contrast-changed y

(11)

where r0 to r4 are constants of controlling the relative impor-
tance of each component. All parameters (l, µ, ν and r0, ..., r4)
are optimized using the contrast related subset in the CSIQ
database. Our new database and MATLAB code will be re-
leased at http://www.ntu.edu.sg/home/wslin/Publications.htm
and https://sites.google.com/site/guke198701/home.

An important note is that our RIQMC model only requires
one single number, namely the PC based entropy of the
original image Hs(x), as labeled in Eq. (11), which is usually
negligible as compared to the image file’s size and can be
encoded precisely with just a few bits in the header file. For
a clear showing, we display the primary flowchart of our
technique in Fig. 5.
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TABLE III: Performance evaluations of our RIQMC and the testing IQA metrics. We highlight the best two performed approaches.

Metrics Type CCID2014 (655 images) TID2008 (200 images) CSIQ (116 images)
PLCC SROCC KROCC RMS PLCC SROCC KROCC RMS PLCC SROCC KROCC RMS

SSIM FR 0.8256 0.8136 0.6063 0.3689 0.5057 0.4877 0.3402 0.8300 0.7450 0.7397 0.5323 0.1124
MS-SSIM FR 0.8458 0.8271 0.6236 0.3488 0.6654 0.5877 0.4303 0.7182 0.8959 0.8833 0.6899 0.0748
VIF FR 0.8589 0.8349 0.6419 0.3349 0.8377 0.7879 0.5945 0.5254 0.9439 0.9345 0.7775 0.0556
MAD FR 0.7928 0.7430 0.5458 0.3985 0.3547 0.2828 0.2047 0.8995 0.9321 0.9207 0.7460 0.0610
IW-SSIM FR 0.8342 0.7811 0.5898 0.3606 0.6996 0.4503 0.3475 0.6874 0.9614 0.9539 0.8168 0.0463
FSIM FR 0.8183 0.7654 0.5705 0.3758 0.6458 0.4388 0.3331 0.7346 0.9435 0.9421 0.7889 0.0558
GSIM FR 0.8073 0.7768 0.5711 0.3859 0.6739 0.5126 0.3946 0.7108 0.9325 0.9354 0.7721 0.0608
IGM FR 0.7806 0.7244 0.5356 0.4087 0.6669 0.4525 0.3272 0.7169 0.9546 0.9547 0.8174 0.0502
SR-SIM FR 0.7834 0.7363 0.5372 0.4064 0.5995 0.3848 0.2911 0.7701 0.9575 0.9528 0.8165 0.0486
VSI FR 0.8209 0.7734 0.5735 0.3734 0.6312 0.4571 0.3450 0.7462 0.9533 0.9504 0.8096 0.0509
WASH FR 0.5689 0.5380 0.3690 0.5378 0.5061 0.3076 0.2051 0.8298 0.8622 0.8412 0.6419 0.0853
FEDM RR 0.6717 0.5729 0.4073 0.4844 0.6594 0.3228 0.2057 0.7233 0.9617 0.9550 0.8189 0.0462
RRED RR 0.7064 0.6595 0.4677 0.4628 0.5278 0.2320 0.1693 0.8172 0.9415 0.9382 0.7838 0.0568
FTQM RR 0.7885 0.7292 0.5330 0.4021 0.7530 0.5997 0.4470 0.6331 0.9606 0.9524 0.8129 0.0468
SDM RR 0.7360 0.6733 0.4862 0.4426 0.7817 0.7378 0.5456 0.6001 0.9175 0.9141 0.7445 0.0670
RIQMC RR 0.8726 0.8465 0.6507 0.3194 0.8585 0.8095 0.6224 0.4933 0.9652 0.9579 0.8279 0.0441
DIIVINE NR 0.3664 0.2958 0.2027 0.6084 0.4426 0.3689 0.2552 0.8627 0.4369 0.3958 0.2769 0.1515
BLIINDS-II NR 0.5862 0.4097 0.2854 0.5298 0.1838 0.0783 0.0563 0.9457 0.1389 0.0989 0.0684 0.1668
BRISQUE NR 0.3608 0.2165 0.1473 0.6098 0.1535 0.1641 0.1115 0.9507 0.3488 0.2539 0.1706 0.1579
NFERM NR 0.4074 0.3497 0.2385 0.5691 0.2705 0.2162 0.1472 0.9262 0.4831 0.3742 0.2667 0.1475
NIQE NR 0.4704 0.3649 0.2489 0.5770 0.0547 0.0588 0.0962 0.9607 0.3019 0.2444 0.1709 0.1606
QAC NR 0.3072 0.1453 0.0972 0.6223 0.1503 0.0832 0.0534 0.9512 0.3283 0.3187 0.2196 0.1591

Metrics Type TID2013 (250 images) Direct average Database size-weighted average
PLCC SROCC KROCC RMS PLCC SROCC KROCC RMS PLCC SROCC KROCC RMS

SSIM FR 0.5658 0.4905 0.3432 0.8087 0.6605 0.6329 0.4555 0.5300 0.7124 0.6870 0.5018 0.5101
MS-SSIM FR 0.6476 0.5450 0.4012 0.7474 0.7637 0.7108 0.5362 0.4723 0.7804 0.7355 0.5527 0.4649
VIF FR 0.8460 0.7720 0.5831 0.5229 0.8716 0.8323 0.6493 0.3597 0.8609 0.8238 0.6350 0.3781
MAD FR 0.4077 0.3300 0.2558 0.8956 0.6218 0.5691 0.4381 0.5637 0.6554 0.5999 0.4496 0.5503
IW-SSIM FR 0.6919 0.4528 0.3644 0.7081 0.7968 0.6595 0.5297 0.4506 0.7951 0.6761 0.5255 0.4554
FSIM FR 0.6578 0.4398 0.3572 0.7388 0.7663 0.6465 0.5125 0.4762 0.7691 0.6620 0.5087 0.4785
GSIM FR 0.6665 0.4985 0.4024 0.7312 0.7700 0.6808 0.5350 0.4722 0.7685 0.6916 0.5267 0.4789
IGM FR 0.6715 0.4509 0.3414 0.7268 0.7684 0.6456 0.5054 0.4756 0.7562 0.6458 0.4885 0.4903
SR-SIM FR 0.6578 0.3917 0.3165 0.7387 0.7496 0.6164 0.4903 0.4909 0.7441 0.6287 0.4782 0.5000
VSI FR 0.6785 0.4643 0.3705 0.7205 0.7710 0.6613 0.5247 0.4728 0.7733 0.6751 0.5170 0.4749
WASH FR 0.5182 0.2791 0.1848 0.8388 0.6138 0.4915 0.3502 0.5729 0.5761 0.4761 0.3303 0.6043
FEDM RR 0.6504 0.3217 0.2373 0.7451 0.7358 0.5431 0.4173 0.4997 0.6929 0.5168 0.3786 0.5353
RRED RR 0.5606 0.3068 0.2419 0.8122 0.6841 0.5341 0.4157 0.5372 0.6696 0.5438 0.4026 0.5538
FTQM RR 0.7697 0.6095 0.4685 0.6261 0.8182 0.7229 0.5654 0.4269 0.7953 0.7048 0.5323 0.4520
SDM RR 0.5831 0.3482 0.2389 0.7968 0.7545 0.6683 0.5038 0.4766 0.7294 0.6402 0.4698 0.5052
RIQMC RR 0.8651 0.8044 0.6178 0.4920 0.8903 0.8546 0.6797 0.3372 0.8775 0.8424 0.6562 0.3571
DIIVINE NR 0.4147 0.3034 0.2089 0.8925 0.4151 0.3410 0.2359 0.6288 0.3955 0.3188 0.2196 0.6648
BLIINDS-II NR 0.0599 0.0390 0.0256 0.9790 0.2422 0.1565 0.1089 0.6553 0.3700 0.2500 0.1741 0.6554
BRISQUE NR 0.0907 0.0994 0.0685 0.9768 0.2385 0.1835 0.1245 0.6738 0.2704 0.1875 0.1275 0.6978
NFERM NR 0.2423 0.1956 0.1320 0.9516 0.3535 0.2869 0.1982 0.6548 0.3641 0.3050 0.2090 0.6792
NIQE NR 0.1659 0.1051 0.0688 0.9672 0.2482 0.1933 0.1306 0.6664 0.3239 0.2501 0.1700 0.6802
QAC NR 0.1138 0.0304 0.0177 0.9744 0.2249 0.1444 0.0969 0.6768 0.2439 0.1281 0.0853 0.7043

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will validate the proposed RIQMC. To the
best of our knowledge, four related image databases/subsets
(CCID2014, TID2008, CSIQ and TID2013) are used as testing
beds. Except our CCID2014 database which has been already
described in Section II, the other three are as follows. First, the
TID2008 database [42] is a large-scale image quality database,
which includes 1,700 images generated from 25 reference
images with 17 distortion types at four distortion levels. We
choose 200 images corrupted by two distortion types: a) mean
shift; b) contrast change. Second, the CSIQ database [43] is
composed of totally 866 images, which are created from 30
original counterparts by using six types of distortions at four
to five distortion levels. In this research, 116 contrast-changed
images are selected for testing. Third, the TID2013 database
[44], extended from TID2008, is the largest image database
up to now. It contains 25 pristine images and associated 3,000

distorted versions with 24 distortion types at five distortion
levels. A total number of 250 images are used here.

Next, our RR RIQMC technique is compared with a large
quantity of IQA models: 1) Classical FR SSIM [6], MS-SSIM
[7], VIF [9]; 2) Popular FR MAD [10], IW-SSIM [8], FSIM
[11], GSIM [12], IGM [13], SR-SIM [14], VSI [15], WASH
[55]; 3) RR FEDM [17], RRED [18], FTQM [19], SDM
[20]; 4) NR DIIVINE [22], BLIINDS-II [23], BRISQUE [24],
NFERM [25], NIQE [26], QAC [27].

On the aforementioned databases, we first map the objective
predictions of each quality metric to subjective human ratings
using the five-parameter logistic function:

q(z) = β1

(
1

2
− 1

1 + exp (β2 · (z − β3))

)
+ β4 · z+ β5 (12)

where z and q(z) respectively mean the input score and the
mapped score, and βj (j = 1, 2, 3, 4, 5) are free parameters
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TABLE IV: Comparison of average computational time (in second/image) on the overall 655 images in the CCID2014 database.

Model SSIM MS-SSIM VIF MAD IW-SSIM FSIM GSIM IGM SR-SIM VSI WASH
Time 0.0685 0.1268 2.4129 2.8079 0.6062 0.6581 0.0392 18.688 0.0636 0.2934 0.2834

Model FEDM RRED FTQM SDM RIQMC DIIVINE BLIINDS-II BQISURE NIQE NFERM QAC
Time 86.015 1.5359 0.5912 0.4115 0.8668 24.672 73.591 0.3161 0.4495 43.236 0.1402

TABLE V: Performance comparison with F-test (statistical significance). The symbol “1”, “0” or “-1” means that our RIQMC algorithm is
statistically (with 95% confidence) better, undistinguishable or worse than the corresponding IQA techniques.

CCID2014 TID2008 CSIQ TID2013
SSIM 1 1 1 1
MS-SSIM 1 1 1 1
VIF 1 0 1 0
MAD 1 1 1 1
IW-SSIM 1 1 0 1
FSIM 1 1 1 1
GSIM 1 1 1 1
IGM 1 1 0 1
SR-SIM 1 1 0 1
VSI 1 1 0 1

CCID2014 TID2008 CSIQ TID2013
WASH 1 1 1 1
FEDM 1 1 1 1
RRED 1 1 1 1
FTQM 1 1 0 1
SDM 1 1 1 1
DIIVINE 1 1 1 1
BLIINDS-II 1 1 1 1
NIQE 1 1 1 1
NFERM 1 1 1 1
QAC 1 1 1 1

TABLE VI: Monotonicity measures (SROCC) of our RIQMC and serval effective RR and NR IQA methods for each pristine image and
its associated contrast-changed versions. We emphasize the best performed algorithm with boldface in each group.

Index 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
DIIVINE 0.072 0.565 0.307 0.345 0.774 0.673 0.605 0.510 0.620 0.168 0.837 0.695 0.720 0.736 0.596
BRISQUE 0.456 0.129 0.106 0.506 0.077 0.653 0.339 0.028 0.366 0.559 0.664 0.193 0.471 0.853 0.004

NIQE 0.480 0.699 0.322 0.508 0.461 0.561 0.759 0.580 0.694 0.811 0.860 0.383 0.398 0.198 0.804
QAC 0.519 0.544 0.041 0.240 0.669 0.162 0.048 0.526 0.081 0.513 0.009 0.055 0.295 0.555 0.375

RRED 0.620 0.665 0.750 0.672 0.722 0.789 0.717 0.756 0.780 0.764 0.724 0.847 0.630 0.775 0.532
FTQM 0.600 0.777 0.811 0.697 0.739 0.845 0.725 0.801 0.813 0.728 0.783 0.824 0.698 0.781 0.658
SDM 0.756 0.675 0.362 0.791 0.626 0.549 0.721 0.514 0.623 0.704 0.836 0.703 0.796 0.775 0.765

RIQMC 0.919 0.794 0.769 0.842 0.805 0.790 0.809 0.805 0.807 0.829 0.858 0.825 0.898 0.878 0.935

to be determined during the curve fitting process. We then
employ four performance measures, as suggested by the video
quality experts group (VQEG) [56], to evaluate and compare
the proposed metric with those testing IQA models. The first
Pearson linear correlation coefficient (PLCC) is computed
between subjective MOS/DMOS ratings and the objective
scores after nonlinear regression. The second Spearman rank-
order correlation coefficient (SROCC) is a non-parametric
rank-based correlation metric, independent of any monotonic
nonlinear mapping between subjective and objective scores.
The third Kendall’s rank-order correlation coefficient (KROC-
C) is another important non-parametric rank correlation metric
for measuring the portion of ranks that match between two data
sets. And the last root mean-squared (RMS) error is defined
as the energy between the converted objective scores and the
original ones. In these four performance evaluations, a value
close to 1 for PLCC, SROCC and KROCC, yet close to 0 for
RMS means superior correlation with subjective ratings.

Table III lists the performance indices of PLCC, SROCC,
KROCC and RMS (after the nonlinear regression) and their
average results, which is defined as δ̄ =

∑4
i=1 δi · wi/

∑
i wi

where δi (i = 1, 2, 3, 4) is the correlation measure for each
of four databases. We set wi = 0.25 for the direct average,
while set wi as the number of images in each database (i.e.
655 for CCID2014, 200 for TID2008, 116 for CSIQ and 250
for TID2013) as the database size-weighted average.

We sum up three advantages of the proposed RIQMC.
First, it was found that our RIQMC model, based on the

analysis of statistics and phase information, is clearly better
than classical and recently designed FR and RR approach-
es and is also substantially superior to state-of-the-art NR
IQA metrics, for contrast-changed contents. It needs to stress
that only VIF is matchable with (in fact, a little inferior
than) our technique, but it is limited to the FR scenario.
Second, the proposed RIQMC is a simple RR IQA model,
only composed of several fundamental statistics and phase
congruency. It can be conjectured that our approach will be
further improved by incorporating other effective operators,
such as gradient magnitude that have been broadly used in
recent FR IQA tasks [11]-[13]. Besides, we also believe that
it will be greatly helpful to insert RIQMC into state-of-the-
art IQA metrics, so as to induce their performance gains on
the whole CCID2014/TID2008/CSIQ/TID2013 database and
contrast related subsets. Third, we want to highlight that the
proposed algorithm has very little computational cost. For
a direct comparison, we measure the average computational
time required to assess an image of size 512 × 768 (using a
computer with Intel i7-2600 processor at 3.40GHz), and report
the results in Table IV. It is very obvious that the RIQMC
works very efficiently, since it only needs to compute PC maps,
entropy and four order statistics.

The statistical significance of the proposed technique is
further estimated by the F-test which computes the prediction
residuals between the converted objective scores (after the
nonlinear mapping) and the subjective ratings. Let F denote
the ratio of two residual variances, and Fcritical (determined
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Fig. 6: Scatter plots of MOS/DMOS versus FR classical SSIM, VIF, state-of-the-art IW-SSIM, GSIM, FSIM and our RIQMC model on the
databases of CCID2014 (the first row), TID2008 (the second row), CSIQ (the third row) and TID2013 (the fourth row). Red and blue plots
in RIQMC (CCID2014) indicate original natural images and their derived contrast-changed copies, respectively.

by the number of residuals and the confidence level) be the
judgement threshold. If F > Fcritical, then the difference
of prediction between those two metrics is significant. The
statistical significance between our algorithm and the other
IQA approaches in comparison are listed in Table V, where
the symbol “1”, “0” or “-1” means that the proposed metric
is statistically (with 95% confidence) better, indistinguishable
or worse than the corresponding one. It is easy to see that the
proposed RIQMC model, despite of the RR nature with only
one feature, is statistically better than nearly all of existing
classical and state-of-the-art IQA metrics tested in this paper.
In particular, our RIQMC is superior to all competing IQA
methods on the CCID2014 database.

We also compute the monotonicity of quality predictions
between some representative IQA methods and subjective
scores on each pristine image and its corresponding contrast-
changed counterparts. SROCC is used in our work because it
is a significant performance index and has been widely used in
quite a few methods for parameter tuning [3], [57]-[58]. Table
VI presents the SROCC results, which once again illustrates
the effectiveness of our RIQMC model with respect to the
testing IQA metrics. Note that most of fifteen SROCC values
of RIQMC are higher than 80%.

Finally, we exhibit the scatter plots of MOS/DMOS versus
FR classical SSIM, VIF, recent IW-SSIM, GSIM, FSIM, and
the proposed RIQMC on four databases in Fig. 6. Clearly, our
technique shows higher linearity and monotonicity. Note that
adaptive algorithms are more useful in real applications, e.g.
segmentation [59]. Seeing the plot of RIQMC on CCID2014,
the red and blue plots independently represent the original
natural images and their derived contrast-changed versions.
Interestingly, we also find that quite a few “blue” contrast-

altered images have higher quality than the “red” ones, which
suggests that the quality of natural images is indeed improved
by contrast-alteration, and the RIQMC can be used as the
target function for contrast enhancement.

V. APPLICATION TO CONTRAST ENHANCEMENT

In Section II we have pointed out that the proper compound
function (i.e. mean-shifting followed by logistic transfer) can
generate images of better contrast and visual quality. Then we
have proposed a new objective IQA method in Section III and
demonstrated its superior performance in Section IV. Note that
contrast enhancement is a blind process, it requires a NR IQA
metric with short execution time in the optimization function
to find the optimal histogram mapping:

F̂ = arg max
F
T (F(x)) (13)

where x is an input image signal, and F(·) and T (·) separately
indicate the contrast alteration method and NR IQA metric. We
can rewrite Eq. (13) to be another equivalent form:

F̂ = arg max
F
T (F(x)) + c (14)

where c is a constant number related to the image content.
Since the RR information of our technique for an input image
is constant, we can replace the NR IQA metric with RIQMC.
On this basis, it is natural to extend the aforesaid subjective
and objective assessments to a direct application: automatic
contrast enhancement.

A. Automatic Contrast Enhancement

We design the automatic enhancement approach, ROHIM,
based on two steps: 1) to adjust the input image histogram



IEEE TRANSACTIONS ON CYBERNETICS, VOL. X, NO. X, XXXX XXXX 10

(a) Original (b) HMF (c) OCTM (d) AGCWD (e) FLHM (f) ROHIM

Fig. 7: The image “shuttered windows” in the Kodak database and enhanced outputs of HMF, OCTM, AGCWD, FLHM, ROHIM.

(a) Original (b) HMF (c) OCTM (d) AGCWD (e) FLHM (f) ROHIM

Fig. 8: The image “five colored hats” in the Kodak database and enhanced outputs of HMF, OCTM, AGCWD, FLHM and ROHIM.

(a) Original (b) HMF (c) OCTM (d) AGCWD (e) FLHM (f) ROHIM

Fig. 9: The image “mountain stream” in the Kodak database and enhanced outputs of HMF, OCTM, AGCWD, FLHM, ROHIM.

(a) Original (b) HMF (c) OCTM (d) AGCWD (e) FLHM (f) ROHIM

Fig. 10: The image “doorway” in the Berkeley image database and enhanced outputs of HMF, OCTM, AGCWD, FLHM, ROHIM.

using the compound function; 2) to find the optimal parameters
maximizing the target function RIQMC. To specify, we first
apply mean-shifting function to alter x:

x′ = x + φ (15)

where φ is to be determined by the subsequent optimization
operation. We further use the logistic function as follows:

y = Fl(x′, ξξξ) (16)

where Fl(·) was given in Eq. (2). Note that directly controlling
ξξξ = {ξ1, ξ2, ξ3, ξ4} is very hard because we are not very clear
what function these four parameters should take. Therefore we
indirectly manipulate the parameter ξξξ and the function Fl(·)
by setting four pairs of pixel values (si, ti) to fix the logistic
function. In this implementation we set si = ti (i = 1...3)
for simplicity. Thus, ξξξ = {ξ1, ξ2, ξ3, ξ4} can be calculated by
minimizing

ξ̂ξξ = arg min
ξξξ

4∑
i=1

∣∣∣ti − Fl(si, ξξξ)∣∣∣
subject to si = ti when i = 1, ..., 3. (17)

For an easy convergence in the following optimization, the
parameter φ is initialized as L − mean(x) (L is defined as
the half of the maximum dynamic range of the input image)
and the initial values of (si, ti) can be set as the values in
the G row of logistic function in Table I. We further demand

{s1, ..., s4} and {t1, ..., t3} unchanged and leave only two
variables {t4, φ} to be free parameters, in order to make the
optimization process work efficiently.

Next, we adjust {t4, φ} to transfer a raw image and find the
optimal solution of {t4, φopt} and the associated ξξξopt output
with the simplex method, by searching for the optimal trans-
ferred image of the maximal RIQMC score. We finally create
the enhanced image yopt via the optimal transfer mapping that
combines mean-shifting and logistic functions based on φopt
and ξξξopt:

yopt = max{min[Fl(x + φopt, ξξξopt), 255], 0} (18)

where max and min operators are used to maintain yopt in
the bound values of 0 ∼ 255.

B. Performance Comparison

We pick some images of various scenes and colors from
Kodak [28] and Berkeley [60], including “shuttered windows”,
“five colored hats”, “mountain stream”, “doorway”, “water
rafters”, “Head light”, “mountain chalet”, and “wild yak”. We
show the above images in Figs. 7-14(a), and their enhanced
results of HMF, OCTM, AGCWD, FLHM and our ROHIM
in Figs. 7-14(b)-(e). It is easy to find that HMF [39] seeks
the tradeoff between the input image and its HE image. As
indicated in Figs. 7-9, 11, 14(b), HMF improves the contrast
of input visual signals, but they look a little dim. We also
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(a) Original (b) HMF (c) OCTM (d) AGCWD (e) FLHM (f) ROHIM

Fig. 11: The image “water rafters” in the Kodak database and enhanced outputs of HMF, OCTM, AGCWD, FLHM and ROHIM.

(a) Original (b) HMF (c) OCTM (d) AGCWD (e) FLHM (f) ROHIM

Fig. 12: The image “Head light” in the Kodak image database and enhanced outputs of HMF, OCTM, AGCWD, FLHM, ROHIM.

(a) Original (b) HMF (c) OCTM (d) AGCWD (e) FLHM (f) ROHIM

Fig. 13: The image “mountain chalet” in the Kodak database and enhanced outputs of HMF, OCTM, AGCWD, FLHM, ROHIM.

(a) Original (b) HMF (c) OCTM (d) AGCWD (e) FLHM (f) ROHIM

Fig. 14: The image “wild yak” in the Berkeley image database and enhanced outputs of HMF, OCTM, AGCWD, FLHM, ROHIM.

note that Fig. 12(b) has obvious noise. That is to say, HMF
cannot provide proper brightness and cannot totally overcome
the noise injection.

OCTM [34] works by first providing a novel definition
of image contrast and tone distortion, then using this defi-
nition to formulate contrast enhancement as an optimization
function, and finally solving the optimization problem with
linear programming. As shown in Figs. 7-14(c), OCTM solves
the problem of noise introduction and its enhanced outputs
have been improved better than the inputs. However, we also
observe that the enhanced images created by OCTM look quite
dull and pale.

AGCWD [40] is based on a simple transformation of the
adaptive gamma correction with weighting distribution. It is
not difficult to find in Figs. 7-14(d) that AGCWD is able to
well restrain the generation of noise artifacts, whereas it is not
good at adjusting luminance, making enhanced images overly
bright in most cases.

FLHM [41] is built upon the fuzzy logic and histogram
under the control of two parameters, one the mean intensity
and the other the contrast intensification. As can be seen in Fig.
10(e), FLHM is well suited for enhancement of low contrast
images, but not good at advancing the visual quality of natural
images, as given in Figs. 7-9(e), 11-14(e).

ROHIM is proposed by fusing subjective and objective qual-
ity assessments for image contrast. In comparison to the above

four, our approach effectively avoids artifacts and preserve
details, and furthermore, it makes enhanced images of more
suitable luminance and glossier than state-of-the-art HMF,
OCTM and AGCWD techniques. A reasonable explanation of
this phenomenon is that the proposed ROHIM model first uses
the logistic transfer to augment the difference of adjacent pixel
values and uses the mean shifting to alter the input image to be
of an appropriate luminance, and then uses the high-accuracy
RIQMC, which well correlates with human perception to the
quality of contrast-changed images, to find the best fusion of
logistic and mean-shifting functions.

A quantitative comparison between different enhancement
algorithms is also conducted. We invited 50 viewers (38 males
and 12 females) to score the overall enhanced images in Figs.
7-14 by the popular paired comparison method. Particularly,
for each group of six images (including the original image
and enhanced images by HMF, OCTM, AGCWD, FLHM and
ROHIM), the participants will give their opinions for a total
of 15 image pairs, in order to decide which is better between a
pair of images. We sum up the winning times for each image
and their averages across eight testing images, as tabulated in
Table VII. Higher score means better performance. Results of
experiments tell that our enhancement technique outperforms
the algorithms tested, and furthermore, the proposed ROHIM
model has won the first place on all image sets.
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TABLE VII: Subjective opinion scores of images in Figs. 7-14 and
their average scores for each contrast enhancement technique. We
highlight the best performed algorithm with boldface.

j-th ORG HMF OCTM AGCWD FLHM ROHIM
1 139 114 113 135 40 209
2 107 146 114 134 60 189
3 95 158 119 144 50 184
4 67 127 81 147 135 193
5 94 163 153 118 28 194
6 146 38 115 162 75 214
7 122 157 111 91 54 215
8 100 151 128 140 27 204

Mean 109 132 117 134 59 200

VI. CONCLUSION

In this paper we have examined the problem of IQA for
contrast change and the related application to automatic image
enhancement. Three main contributions have been made in
our study. First, we build a carefully-designed and dedicated
contrast-changed image database (CCID2014) to facilitate the
research of contrast-changed IQA. This database includes 655
images created by various kinds of contrast-oriented transfer
functions, consisting of gamma transfer, concave and convex
arcs, cubic and logistic functions, mean-shift and compound
functions (mean-shifting followed by logistic function), and
associated MOS values scored by 22 inexperienced observers.
Second, we further develop a high-performance RR RIQMC
metric by combining two respects of measures in “similarity”
and “comfort”. The proposed RIQMC is superior to classical
and state-of-the-art FR, RR and NR IQA methods on contrast
related CCID2014, TID2008, CSIQ, and TID2013 databases,
and furthermore, it only requires very little RR information
(a single number of PC based entropy of the original image)
and short computational time. Third, we present an automatic
contrast enhancement ROHIM model using subjective and
objective assessments for image contrast, which can enhance
images better than recent enhancement technologies.
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